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Abstract 

The most popular industrial machines are three-phase induction motors 

since they are significantly less expensive and durable because they don't 

have a commutator. The majority of activities in businesses, agriculture, 

commercial complexes, etc. are propelled by them. The flux axis and the 

armature axis are, however, always in quadrature in the separately excited 

DC machines due to the inclusion of a commutator. As a result, there is 

always an inherent decoupling between the main flux and the armature flux, 

also known as vector or decoupled control, which allows for flexible 

operation and, as a result, accurate control. The stator current must satisfy 

the induction motor's torque and flux requirements because it is singly 

supplied. 

The basic foundation needed for vector control of induction motor (IM) 

is decoupling of stator currents into flux and torque components along the 

rotor flux axis. For this information, the instantaneous rotor position is 

necessary. Depending on the methods employed for finding rotor position, 

vector control is two types. Direct vector control (DVC) and indirect vector 

control (IVC). In direct vector control, the rotor position is sensed by Hall 

Effect sensors introduced in the stator. The basic drawback is that it 

introduces harmonics in the output voltage and results in cost and size. In 

Sensorless vector control (SVC), the rotor position is estimated using 

mathematical analysis and a dynamic machine model, which eliminates 

speed sensors, encoder, and motor shaft extension and hence reduces cost 

and ruggedness. The basic methods employed for detecting rotor position by 

sensorless control involve Conventional methods like the Extended Kalman 

filter method. 

Keywords: Kalman filter, sensorless control, induction motor, flux, torque 

speed 
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1. Introduction 

The thyristor controlled rectifiers are playing a great role in DC drives, 

because of their excellent performance characteristics like torque-speed and 

effective-flux control [8]. However, the variable speed induction motor drives 

(IMD) are great importance in the area of research and the related industry 

applications. This technology has been used because of its applications in 

inverter with pulse width modulation (PWM) schemes, which generate a 

poly-phase supply of a known frequency [8]. 

Induction motors (IM) have notable advantages like excellent self- 

starting capability, high efficiency, very simple and rugged structure, high 

torque-to-weight ratio, low cost, absence of the commutator and small inertia 
[8]. But in most industrial applications, it is required to get a tremendous 

response for torque, speed or position control, similar to DC motors. 

Besides, it has its own disadvantages, i.e., nonlinear, complex, multivariable 

mathematical model and not capable of variable speed operations [15, 16]. The 

above disadvantages are addressed by using elegant motor controllers and 

variable controllers, i.e., Scalar as well Vector drive or Field-Orientation 

Control (FOC) [1, 3]. 

The block diagram of SVCIM, shown in Figure.1, gives the estimation 

of speed by the EKF method. 

 

Fig 1: Block diagram of speed estimation of SVCIM by EKF Method 
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2. Extended kalman filter method 

The block diagram of SVCIM, shown in Figure. 1, gives the 

estimation of speed by the EKF method. 

Here the speed is estimated by Extended Kalman filter and from the 

estimated speed, the flux proportional to the speed required for saturation is 

the estimated value of flux. The EKF is a full order stochastic observer for 

the recursive optimum state estimation of a nonlinear dynamical system in 

real-time by using signals that are corrupted by noise. The noise sources in 

EKF take into account measurement and modeling inaccuracies. The block 

diagram of the EKF in Figure. 2 estimates speed, the machine model of the 

same indicated on the top. The EKF algorithm uses the full machine 

dynamic model where ωr is considered as a parameter as well as a state [4]. 

 

Fig 2: Extended kalman filter for the estimation of speed 

The EKF modeling to estimate the speed of SVCIM is done considering 

the following notations: 
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Where: x is the state vector 

A = System matrix 

B = Input matrix 

The speed obtained by the extended Kalman filter is the estimated speed 

for the Control of IM. The implementation of the discretized EKF algorithm 

is as follows: 

1) Selecting an induction motor model in the time domain. 

2) Discretization of the machine model. 

3) Calculating the noise and state covariance matrices Q, R and P. 

4) Implementation of the discretized EKF algorithm. 

5) Tuning of the covariance matrices. 

3. Time domain induction machine model 

The modelling of the induction motor is in a stator flux oriented 

reference frame to estimate the rotor speed using EKF. In EKF, the rotor 

speed is a state variable and parameter. For the induction motor control in 

the above mode, the modelling is required in the state-space analysis [18]. 

The augmented machine model is given by: 

For attaining acceptable accuracy, the sampling time should be 

appreciably shorter than the characteristic time constant of the machine; the 

final choice of sampling time should enable adequate execution time of the 

full EKF algorithm and satisfactory accuracy and stability. The sampling 

time for simulation analysis is 0.001 seconds. 

Here v (k) (v-noise vector of the state, which is assumed to be zero 

mean and white Gaussian noise) represents system noise. It is independent of 

X (k) and if its covariance matrix is Q, then the system model becomes 

X(k + 1) = AdX(k) + BdU(k) + v(k)  

The measurement noise is represented by w (k), which is assumed to be 

zero mean and white Gaussian noise, it is independent of X (k) and v (k), 

and if its covariance matrix is P, then the output becomes Y(k) = Cd X(k) + 

w(k)  

4. To find the noise and state covariance matrices 

The Kalman filter plays a vital role in obtaining the immeasurable states 

by using the measured states and statistics involved in noise and 

measurements. A critical design lies in the correct initial values of 
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covariance matrices Q and R. The size of the covariance matrix Q and R 

depend on no of state vector and output vector, here Q is a 5x5 matrix, and R 

is a 2x2 matrix. 

The number of state variables depends on elements of Q and R. The 

system noise matrix Q is a five by five matrix, and the measured noise 

matrix R is a two by two matrix. The assumption is that the noise signals are 

not correlated. Now both Q and R get reduced to diagonal matrices with 5 

elements and 2 elements, respectively. Since the parameters in the direct and 

quadrature axes are the same, the first two elements in the diagonal matrices 

of Q are equal, and the third and fourth elements are also equal. So Q = 

diagonal (q11, q11, q33, q33, q55) contain only 3 elements and two diagonal 

elements in R are equal (r11=r22=r), hence R = diagonal (r, r). It follows that 

only 4 noise covariant elements must be known. 

5. Tuning of the covariance matrix 

The tuning of the EKF involves an iterative modification of the 

covariance matrix, which gives the best estimates of the states. Changing the 

covariance matrices Q and R affect both the transient and steady-state 

operation of the EKF. Increasing Q corresponds to more substantial system 

noises or enormous uncertainty in the machine model and increasing 

covariance R corresponds to the fact that measurement of the currents are 

subjected to more substantial noise and should be weighed less by the filter. 

The initialization of matrices Q and R is by hit and trial method and 

tuned accordingly. From experience, the value of Q55 is chosen higher than 

the remaining elements in the Q matrix, and the values of R matrix elements 

are higher than Q matrix elements [17]. 

6. Results 

The convergence criteria and precision value of flux and speed lie in the 

convergence of the covariance error matrix, which gives the estimated value 

of flux and speed for the machine. The performance of the motor in terms of 

speed and flux along with other parameters like speed error, flux error, and 

torque are analysed. The performance of speed and torque in terms of peak 

overshoot and peak time is found numerically and tabulated. The peak 

overshoot (Mp) is the peak value attained by the curve during simulation 

time and peak time (tp) is a time where magnitude reaches a peak value. 

Table. 1 gives the ratings of the induction motor considered. 
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Table 1: Ratings and parameters of induction motors 

3Ф-Induction motor Specifications 

Parameter Value 

Input voltage (AC) 220V(Rms), 50Hz 

Rated Power and current 0.75 kW, 3A 

Base speed 1440 rpm 

Stator and rotor resistances (Rs, Rr) 6.37Ω,4.3Ω 

Stator and rotor self-inductances (Ls, Lr) 0.26H 

Mutual inductance between stator and rotor (Lm) 0.24H 

Moment of Inertia of motor and load (J) 0.0088 Kg·m2 

Viscous friction coefficient (β) 0.003N·m·s/rad 
 

The performance curves for estimated speed, speed error, estimated 

torque, reference flux, estimated flux, and flux error is as follows: 

 

Fig 3: Plot showing the estimated and reference speeds for the EKF controller 
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Fig 4: Plot showing speed error and time using the EKF controller 

 

Fig 5: Plot showing actual torque using the EKF controller 
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Fig 6: Plot showing actual flux and estimated flux Vs. Time by EKF controller 

 

Fig 7: Plot showing Flux error using the EKF controller 

From the above Figures. 3 to 7 for estimated speed, reference speed, 

speed error, estimated torque reference flux, estimated flux, and flux error 

for EKF controlled SVCIM, the following is analysis drawn: the estimated 

speed is less than reference by 0.2%, and the settling time is 716 

milliseconds. The estimated torque reaches a peak value of 7.736 seconds in 

a peak time of 94 milliseconds. The estimated flux is 0.434 Weber’s and 

reaches a peak value in 2.36 seconds. Table.3.2gives the response for speed 

and torque in terms of peak overshoot (Mp) and peak time (tp) for EKF 

controlled SVCIM. 
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Table 2: Response for speed and torque in terms of peak overshoot (Mp) and peak 

time (tp) for EKF controlled SVCIM 

Parameter Peak overshoot (Mp) (RPM) Peak time (tp) (Seconds) 

Speed (RPM) 1491 0.716 

Speed error 1.430 2.221 

Torque (N-m) 7.736 0.094 
 

References 

1. Garcia GO, Mendes Luis JC, Stephan RM, Watanabe EH. An Efficient 

Controller for an Adjustable Speed IM Drive, IEEE transaction on 

industrial electronics. 1994;41(5):533-39. 

2. Krishnan R. Electric Motor Drives-Modeling, Analysis, and control, 

Pearson Education, Inc., Delhi, India, 2003, 128-215. 

3. Bose BK. Modern Power Electronics and AC Drives, Prentice Hall 

PTR, Upper Saddle River, 2002. 

4. Adrian Dumitrescu, Denes Fodor, Tapani Jokinen, Marius Rosu, Sorin. 

Modeling And Simulation of Electric Drive Systems Using Mat lab/ 

Simulink Environments, IEEE Int. Conf. on Electric Machines and 

Drives IEMD-99, Seattle, USA, 1999 May, 451-453. 

5. Hoang Le-Huy. Modeling and Simulation of Electrical Drives using 

MATLAB/Simulink and Power System Block set, IEcon'01: The 27th 

Annual Conference of the IEEE Industrial Electronics Society, 2001, 

1603-1611. 

6. Peter Vas. Sensorless vector control and direct torque control. 

Monographs in electrical and electronics engineering-42, Oxford science 

in 1998. 

7. Joachim Holtz. Sensorless control of induction motor drives, IEEE. 

2017 June;90(8):1359-1394. 

8. Poddar, Ranganathan VT. Sensorless double-inverter-fed wound-rotor 

induction-Machine drive, Industrial Electronics, IEEE transactions on, 

53(1), 86-95. 

9. Epaminondas Mitronikas D, Athanasios Safacas N. Member, IEEE An 

Improved Sensorless Vector-Control Method for an IM Drive, IEEE 

transactions on industrial electronics. 2005;52(6):1148-57. 

10. Bodkhe SB, Aware MV. Speed-Sensorless, adjustable-speed induction 

motor drive based on dc link measurement, International Journal of 

Physical Sciences. 2009;4(4):221-232. 



 

Page | 170 

11. Mustafa Gurkan Aydeniz, Ibrahim Senol. A novel approach to 

sensorless control of induction motors, International Conference on 

Electrical and Electronics Engineering - ELECO 2009 Publication Year, 

2009, I-179 -I-183.5-8 5-8. 

12. Ansari A, Deshpande DM. Mathematical Model of Asynchronous 

Machine in MATLAB Simulink, International Journal of Engineering 

Science and Technology. 2010;2(5):1260-1267. 

13. Jogendra Singh Thongam, Rachid Beguenane. Sensorless Vector 

Control of Induction Motor Drive-A Model-Based Approach, 2011, 77- 

96. 

14. Osama Ebrahim S, Praveen Jain K. Fellow IEEE NEW SVC Scheme for 

the IM Drive, International Conference on Electrical and Electronics 

Engineering, ELECO, 2009, 179-183. 

15. Américo Vicente Leite, Rui Esteves Araújo, Diamantino Freitas. A New 

Approach for Speed Estimation in Induction Motor Drives Based on a 

Reduced-Order Extended Kalman Filter, 0-7803-8305-2, IEEE, 2004, 

1221-1226. 

16. Kanungo Barada Mohanty, Amit Patra. Flux and speed estimation in 

decoupled induction motor drive using Kalman Filter", Proceedings of 

national system conference, IIT Mumbai, 2005, 1-9. 

17. Gunabalan R, Subbiah V, Ram Reddy B. Sensorless Control of 

Induction Motor with Extended Kalman Filter on TMS320F2812 

Processor, International Journal of Recent Trends in Engineering. 

2009;2(5):14-19. 

18. Pavel Brand Stetter, Martin Kuchar, David Vinklarek. Estimation 

Techniques for Sensorless Speed Control of IM Drive, IEEE ISIE, 

Montreal, Quebec, Canada, 2006, 154-159. 

19. Nadia Salvatore. Member, IEEE, Andrea Capone, Student Member, 

IEEE, FerranteNeri, Member, IEEE, Silvio Stasi and Giuseppe 

Leonardo Casella, Member, IEEE "Optimization of Delayed-State 

Kalman-Filter-Based Algorithm via Differential Evolution for 

Sensorless Control of IMs, IEEE transactions on industrial electronics. 

2010;57(1):38. 


